Lattices over subhereditary orders and socle-projective modules

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modules over Projective Schemes

Definition 1. Let S be a graded ring, set X = ProjS and letM a graded S-module. We define a sheaf of modulesM ̃ on X as follows. For each p ∈ ProjS we have the local ring S(p) and the S(p)module M(p) (GRM,Definition 4). Let Γ(U,M ̃) be the set of all functions s : U −→ ∐p∈U M(p) with s(p) ∈M(p) for each p, which are locally fractions. That is, for every p ∈ U there is an open neighborhood p ∈ V ⊆...

متن کامل

Projective Modules over Finite Groups

Serre [5] has recently proved a general theorem about projective modules over commutative rings. This theorem has the following consequence : If 7T is a finite abelian group, any finitely generated projective module over the integral group ring Zir is the direct sum of a free module and an ideal of Zir. The question naturally arises as to whether this result holds for nonabelian groups x. Serre...

متن کامل

Projective Modules over Dedekind Domains

In these notes we will first define projective modules and prove some standard properties of those modules. Then we will classify finitely generated projective modules over Dedekind domains Remark 0.1. All rings will be commutative with 1. 1. Projective modules Definition 1.1. Let R be a ring and let M be an R-module. Then M is called projective if for all surjections p : N → N ′ and a map f : ...

متن کامل

ON PROJECTIVE L- MODULES

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...

متن کامل

Testing isomorphism of lattices over CM-orders

A CM-order is a reduced order equipped with an involution that mimics complex conjugation. The Witt-Picard group of such an order is a certain group of ideal classes that is closely related to the “minus part” of the class group. We present a deterministic polynomial-time algorithm for the following problem, which may be viewed as a special case of the principal ideal testing problem: given a C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1989

ISSN: 0021-8693

DOI: 10.1016/0021-8693(89)90084-7